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STOCHASTIC SIMULATIONS FOR FLOW IN NONSTATIONARY
RANDOMLY HETEROGENEOUS POROUS MEDIA USING A

KL-BASED MOMENT-EQUATION APPROACH∗

ZHIMING LU† AND DONGXIAO ZHANG‡

Abstract. In this study, we extend the Karhunen–Loève moment equation (KLME) approach,
an approach based on KL decomposition, to efficiently and accurately quantify uncertainty for flow
in nonstationary heterogeneous porous media that include a number of zones with different statistics
of the hydraulic conductivity. We first decompose the log hydraulic conductivity Y = lnKs for
each zone by the KL decomposition, which is related to a set of eigenvalues and their corresponding
orthogonal deterministic eigenfunctions. Based on the decomposition for all individual zones, we
develop an algorithm to find the eigenvalues and eigenfunctions for the entire domain. Following
the methodology proposed by Zhang and Lu [J. Comput. Phys., 194 (2004), pp. 773–794], we solve
the head variability up to second order in terms of σ2

Y and compare the results with those obtained
from Monte Carlo (MC) simulations. It is evident that the results from the KLME approach with
higher-order corrections are close to those from the MC simulations, but the computational cost for
the KLME method is much lower than that for the MC simulations.
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1. Introduction. Predicting flow and transport in porous media inevitably in-
volves uncertainties because of our incomplete knowledge in hydraulic properties of
these media. Such properties are conventionally treated as spatially random functions,
and the equations governing flow and transport in such porous media are stochastic. In
the last two decades, many predictive models have been developed to predict the mean
flow and to quantify uncertainties associated with the mean predictions [6, 7, 5, 20].
Monte Carlo (MC) simulations and the moment-equation approach are two widely
used methods for solving stochastic partial differential equations. However, both can
be computationally expensive for large-scale problems [15].

Zhang and Lu [21] proposed an efficient and accurate Karhunen–Loève moment-
equation (KLME) method for solving stochastic equations based on the KL decom-
position of the stationary process, i.e, log hydraulic conductivity. Specifically, with
the combination of the KL decomposition and perturbation methods, they evaluated
the mean head up to fourth order in σY and the head (co)variance up to third or-
der in σ2

Y . They also explored the validity of this approach for different degrees of
medium variability and various correlation scales through comparisons against MC
simulations. Lu and Zhang [15] systematically compared the KLME method with
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MC simulations and the conventional moment-equation (CME) method in terms of
computational efficiency and solution accuracy. They demonstrated that the KLME
method is computationally much more efficient than both the MC simulations and
the CME approach while retaining high accuracy (i.e., close to MC results).

The method has been applied to several different flow and solute transport sce-
narios, including fluid flow in unsaturated soils [19], two-phase (water and oil) flow
[2, 3], fluid flow in unconfined systems [11], transient flow [17], and solute transport
in saturated porous media [12]. It is assumed in all these studies that the porous
media are stationary, which means that the mean hydraulic properties are constant in
the domain and that the covariance between any two points in the simulation domain
depends on their distance rather than the actual locations of these two points. How-
ever, hydraulic properties exhibit spatial variations at various scales, such as at the
laboratory scale due to variations in pore geometry, at the field scale due to soil strati-
fications, and at the regional scale due to large-scale geological variability. Therefore,
it is important to extend the KLME method for simulating flow and transport in
random porous media with a multiscale variability.

Lu and Zhang [16] developed a conditional KLME method to incorporate per-
meability measurements in porous media. Conditioning renders the log hydraulic
conductivity field statistically inhomogeneous (spatially nonstationary) for an other-
wise stationary field. The algorithm is very efficient for some special problems in
which the eigenvalues and eigenfunctions for the unconditional field can be solved
analytically. In this study, our focus will be on development of an efficient strategy
for predicting head moments for flow in randomly heterogeneous, two-scale porous
media. The hydraulic conductivity of porous media varies spatially at a large scale
as different zonations (due to stratifications, for example) and also at a smaller scale
within each individual zone.

The remainder of this paper is organized as follows. We begin by describing the
mathematical formulation for flow in heterogeneous porous media. We then present
a detailed description of methodology for decomposing nonstationary random fields.
For mathematical completeness, the KL-based moment equations are briefly provided.
Finally, some numerical examples are used to validate the model by comparing with
MC simulation results, followed by a short summary and discussion.

2. Stochastic differential equations. We consider transient water flow in sat-
urated media satisfying the following continuity equation and Darcy’s law [1],

Ss
∂h(x, t)

∂t
+ ∇ · q(x, t) = g(x, t),(2.1)

q(x, t) = −Ks(x)∇h(x, t),(2.2)

subject to initial and boundary conditions:

h(x, 0) = H0(x), x ∈ Ω,(2.3)

h(x, t) = H(x, t), x ∈ ΓD,(2.4)

q(x, t) · n(x) = Q(x, t), x ∈ ΓN ,(2.5)

where q is the flux, h(x, t) is the hydraulic head, H0(x) is the initial head in the
domain Ω, H(x, t) is the prescribed head on Dirichlet boundary segments ΓD, Ks(x)
is the saturated hydraulic conductivity, Q(x, t) is the prescribed flux across Neumann
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boundary segments ΓN , n(x) = (n1, . . . , nd)
T is an outward unit vector normal to

the boundary Γ = ΓD ∪ ΓN , d is the dimension of the problem, and Ss is the specific
storage. For simplicity, in this study, we assume that specific storage Ss and all
boundary and initial conditions are deterministic, while Ks(x) is treated as a random
function, and thus (2.1)–(2.5) become stochastic partial differential equations, whose
solutions are no longer deterministic values but probability distributions or related
statistical moments. Our aim is to find the mean hydraulic head and its associated
uncertainties.

Though the moment-equation approach is free of assumptions on parameter dis-
tributions, for the sake of comparison with the MC method, we assume that the
hydraulic conductivity Ks(x) in each zone follows a log normal distribution, and we
work with the log-transformed variable Y (x) = ln[Ks(x)] = 〈Y (x)〉 + Y ′(x), where
〈Y (x)〉 is the mean and Y ′(x) is the zero-mean fluctuation. The statistics (mean,
variance, and correlation lengths) of the log hydraulic conductivity may be different
for different zones. It is assumed that the log hydraulic conductivity in any zone is
uncorrelated with that in all other zones [18, 14].

3. KL decomposition of the log hydraulic conductivity. The KL decompo-
sition of a stationary conductivity field has been presented in literature [8, 9, 10, 21].
However, for completeness and convenience of presentation, the procedure is out-
lined here and followed by an algorithm for decomposing nonstationary fields. For a
stochastic process Y (x) = ln[Ks(x)], where x ∈ Ω is the domain of interest, because
its covariance function CY (x,y) = 〈Y ′(x)Y ′(y)〉 is bounded, symmetric, and positive
definite, it can be decomposed into [4]

CY (x,y) =

∞∑
n=1

λnfn(x)fn(y),(3.1)

where λn are eigenvalues and fn(x) are orthogonal, deterministic functions that form
a complete set [13], ∫

Ω

fn(x)fm(x)dx = δnm, n,m ≥ 1,(3.2)

where δnm is the Kronecker delta function, δnm = 1 for n = m, and δnm = 0 otherwise.
The mean-removed stochastic process Y ′(x) can be expanded in terms of λn and fn(x)
as

Y ′(x) =

∞∑
n=1

ξn
√
λnfn(x),(3.3)

where ξn are orthogonal random variables, i.e., 〈ξn〉 = 0 and 〈ξnξm〉 = δnm. Under the
assumption that Y (x) is normally distributed, ξn are orthogonal standard Gaussian
random variables. The expansion in (3.3) is called the KL expansion. The eigenvalues
and eigenfunctions can be solved from the following Fredholm equation:∫

Ω

CY (x,y)f(y)dy = λf(x).(3.4)

This equation can be solved analytically for some special cases, such as in the case of
a rectangular domain with a separable exponential covariance function [21]. In gen-
eral, however, (3.4) has to be solved numerically. Ghanem and Spanos [8] presented a
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Galerkin-type algorithm for solving (3.4), which involves solving an eigenvalue prob-
lem CX = λX, where C is an N × N matrix, X is a vector of size N , and N is
the number of grid nodes in the domain Ω. The summation of all eigenvalues can
be determined by setting y = x in (3.1) and integrating the derived equation with
respect to x over Ω, which yields

∑∞
n=1 λn = σ2

Y |Ω|, where |Ω| is the size of the flow
domain (an area for two-dimensional problems and a volume for three-dimensional
problems).

Note that stationarity of the process Y (x) is not required in the above procedure.
Suppose the simulation domain is partitioned into M nonoverlapping subdomains
Ω =

⋃M
m=1 Ωm and Ωm ∩ Ωn = φ for m 	= n, and accordingly the log hydraulic

conductivity field can be written as

Y (x) = lnKs(x) =

M∑
m=1

Ym(x)ψm(x),(3.5)

where Ym(x) = lnKs(x) is a spatial random function defined in subdomain Ωm, and
ψm(x) is a deterministic indicator function given as ψm(x) = 1 for x ∈ Ωm and
ψm(x) = 0 otherwise. For convenience in mathematical representation, Ym(x) is
extended to the entire domain Ω as Ym(x) = 0 for x /∈ Ωm. From (3.5), one can
derive the mean, perturbation, and covariance of Y (x) as [14]

〈Y (x)〉 =

M∑
m=1

〈Ym(x)〉ψm(x),(3.6)

Y ′(x) =

M∑
m=1

Y ′
m(x)ψm(x),(3.7)

and

CY (x,y) =

M∑
m=1

Cm(x,y)ψm(x)ψm(y),(3.8)

where Cm(x,y) = 0 for x /∈ Ωm or y /∈ Ωm. By definition, the eigenvalues and
eigenfunctions for the entire domain Ω have to satisfy (3.4). Substituting (3.8) into
(3.4) yields

M∑
m=1

ψm(x)

∫
Ωm

Cm(x,y)f(y)dy = λf(x).(3.9)

For any x ∈ Ωm, (3.9) leads to∫
Ωm

Cm(x,y)f(y)dy = λf(x),(3.10)

which means that eigenvalues and eigenfunctions for the entire domain Ω must be the
eigenvalues and eigenfunctions in each individual subdomain. Note that the solution
of (3.10) includes infinity numbers of eigenvalues and eigenfunctions. Suppose we

have solved eigenvalues λ
(m)
n and eigenfunctions f

(m
n (x), n = 1, 2, . . . , from (3.10) for

all subdomain Ωm, m = 1,M . These eigenfunctions f
(m)
n (x) are defined only on the
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subdomain Ωm and are then extended to the entire domain Ω such that f
(m)
n (x) = 0

for x /∈ Ωm, m = 1,M , n = 1, 2, . . . . From the above reasoning, it is easy to see

that the sets λ
(m)
n and f

(m)
n (x), m = 1,M , n = 1, 2, . . . , are the eigenvalues and

eigenfunctions for the domain Ω, which leads to the following decomposition of Y ′:

Y ′(x) =

M∑
m=1

∞∑
n=1

ζ(m)
n

√
λ

(m)
n f (m)

n (x),(3.11)

where ζ
(m)
n are orthogonal random variables with a zero mean and unit variance, and

the indicator function ψm(x) in (3.11) has been dropped because f
(m)
n (x) is also zero

for x /∈ Ωm.
Since the decomposition of Y ′(x) includes an infinite number of terms, one has

to truncate the series in (3.11). Because the magnitudes of λ
(m)
n are related to the

size of the subdomain Ωm and the variability σ2
Y,m by

∑
n λ

(m)
n = σ2

Y,m|Ωm|, where

|Ωm| is the size of subdomain Ωm, one may need to sort λ
(m)
n before truncating

the decomposition in (3.11). After sorting and rearranging its terms, (3.11) may be
written formally as

Y ′(x) =

∞∑
k=1

ξk
√
λkfk(x),(3.12)

where λk and fk(x) are eigenvalues and eigenfunctions for the entire domain. The
procedure can be summarized as follows:

1. Equation (3.10) is solved for each individual zone Ωm to obtain eigenvalues

{λ(m)
n , n = 1, 2, . . . } and eigenfunctions {f (m)

n (x), n = 1, 2, . . . }.
2. Extend the domain of f

(m)
n (x) from Ωm to Ω by defining f

(m)
n (x) = 0 for

x /∈ Ωm.
3. Merge M sets of eigenvalues {λ(m)

n ,m = 1,M, n = 1, 2, . . . } and sort them in
a nonincreasing order (denoting the sorted series as λk, k = 1, 2, . . . ).

4. Arrange the set of merged eigenfunctions {f (m)
n ,m = 1,M, n = 1, 2, . . . }

based on the sorted eigenvalues and denote the new set of eigenfunctions as
fk(x), k = 1, 2, . . . .

One can easily see that λk and fk(x) satisfy (3.4). In addition, it can be shown that
the set of eigenfunctions fk(x) is orthogonal. In fact, if fi and fj originally (before

merging and sorting) belong to the same group m solved from (3.10), say, f
(m)
n and

f
(m)
k , by definition and noting that f

(m)
n (x) and f

(m)
k (x) are zero for x /∈ Ωm, one has∫

Ω

fi(x)fj(x)dx =

∫
Ωm

f (m)
n (x)f

(m)
k (x)dx = δnk,(3.13)

which is identical to δij because i = j if and only if n = k. On the other hand, if fi

and fj are from two different groups, say, f
(m)
n and f

(l)
k , m 	= l, one has∫

Ω

fi(x)fj(x)dx =

∫
Ω

f (m)
n (x)f

(l)
k (x)dx = 0,(3.14)

because of the fact that f
(m)
n (x) is nonzero only for x ∈ Ωm, while f

(l)
k (x) is nonzero

only for x ∈ Ωl.
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The KL decomposition provides a way to generate realizations. Once the eigen-
values λk and their corresponding eigenfunctions fk are solved, realizations of the
log hydraulic conductivity field can be generated simply by independently sampling
a certain number of values zk from the standard Gaussian distribution N(0, 1) and
then computing

Y (x) ≈
M∑

m=1

〈Ym(x)〉ψm(x) +

K∑
k=1

zk
√
λkfk(x),(3.15)

where K is the number of terms needed to generate realizations with a given accuracy.
This equation will be used to generate a number of MC realizations for the purpose
of verifying the accuracy of the KLME method, as discussed in illustrative examples.

Since eigenvalues
√
λk and their corresponding eigenfunctions fk(x) always appear

together, in the following derivations, we define new functions f̃k(x) =
√
λkfk(x), and

the tilde over fk is dropped for simplicity.

4. KL-based moment equations. Since the dependent variable h(x, t) is a
function of the input variability σ2

Y (x), one may express h(x, t) as an infinite series
as h(x, t) =

∑∞
m=1 h

(m)(x, t). In this series, the order of each term is with respect
to σY (x). We also expand Ks(x) = exp[Y (x)] = exp[〈Y (x)〉 + Y ′(x)] = KG(x)[1 +
Y ′ + (Y ′)2/2 + · · · ], where KG(x) is the geometric mean of the saturated hydraulic
conductivity Ks. After combining (2.1) and (2.2), substituting expansions of h(x, t)
and Ks(x) into resultant equations, and collecting terms at separate orders, we obtain

∇ ·
[
KG(x)∇h(0)(x, t)

]
+ g(x, t) = Ss

∂h(0)(x, t)

∂t
,(4.1)

h(0)(x, 0) = H0(x), x ∈ Ω,(4.2)

h(0)(x, t) = H1(x, t), x ∈ ΓD,(4.3)

−KG(x)∇h(0)(x, t) · n(x) = Q(x, t), x ∈ ΓN ,(4.4)

and, for m ≥ 1,

∇ ·
[
KG(x)∇h(m)(x, t)

]
+ g(m)(x, t) = Ss

∂h(m)(x, t)

∂t
,(4.5)

h(m)(x, 0) = 0, x ∈ Ω,(4.6)

h(m)(x, t) = 0, x ∈ ΓD,(4.7)

KG(x)∇h(m)(x, t) · n(x) = (−1)m+1Q(x, t)

m!
[Y ′(x)]m, x ∈ ΓN ,(4.8)

where

g(m)(x, t) = − Ss

m∑
k=1

(−1)k

m!
[Y ′(x)]k

∂h(m−k)(x, t)

∂t

+ KG(x)∇Y ′(x) · ∇h(m−1)(x, t) +
g(x, t)

m!
[−Y ′(x)]m.(4.9)
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Equations (4.1)–(4.4) are the governing equations for the zeroth-order mean head. In
the CME approach, the equations for higher-order corrections (usually up to second
order) for the mean head are obtained from (4.5)–(4.9). For example, the second-
order correction 〈h(2)(x, t)〉 can be derived by setting m = 2 in (4.5)–(4.9), taking
the ensemble mean of these equations, and solving the derived moment equations.
The first-order (in terms of σ2

Y ) head covariance can be derived from (4.5)–(4.9) by
setting m = 1, multiplying the derived equation for h(1)(x, t) by h(1)(χ, τ), and taking
the ensemble mean. As demonstrated in [15], the CME approach is computationally
expensive, especially for higher-order solutions in large-scale problems.

In the KLME method, we further assume that h(m)(x, t) can be expanded in terms
of those orthogonal random variables ξn, n = 1, 2, . . . , which are used in expanding
Y ′(x) [21],

h(m)(x, t) =

∞∑
i1,i2,...,im=1

⎛
⎝ m∏

j=1

ξij

⎞
⎠h

(m)
i1,i2,...,im

(x, t),(4.10)

for example,

h(1) =

∞∑
i=1

h
(1)
i ξi, h(2) =

∞∑
i,j=1

h
(2)
ij ξiξj , h(3) =

∞∑
i,j,k=1

h
(3)
ijkξiξjξk,(4.11)

where h
(m)
i1,i2,...,im

(x, t) are deterministic functions to be determined. Substituting de-

composition of Y ′(x), i.e., (3.3), and, recursively, h(m)(x, t) into (4.5)–(4.9), we obtain

governing equations for h
(m)
i1,i2,...,im

. For example, substituting decompositions of Y ′(x)

and h(1)(x, t) into (4.5)–(4.9) for m = 1, one derives equations for {h(1)
n } that include

infinite series in terms of {ξn}. Because of the orthogonality of set {ξn}, by multi-
plying ξk on the resultant equations and taking the ensemble mean, one obtains the

equation and initial and boundary conditions for each individual term h
(1)
n , which

read as

∇ ·
[
KG(x)∇h(1)

n (x, t)
]

+ g(1)
n (x, t) = Ss

∂h
(1)
n (x, t)

∂t
,(4.12)

h(1)
n (x, 0) = 0, x ∈ D,(4.13)

h(1)
n (x, t) = 0, x ∈ ΓD,(4.14)

KG(x)∇h(1)
n (x, t) · n(x) = Q(x, t)fn(x), x ∈ ΓN ,(4.15)

where

g(1)
n (x, t) =

[
Ss

∂h(0)(x, t)

∂t
− g(x, t)

]
fn(x) + KG(x)∇fn(x) · ∇h(0)(x, t).(4.16)

Recalling the definition of fn(x), it is seen that all driving terms in (4.12)–(4.16) are
proportional to

√
λn, which decreases as n increases. This ensures that the magnitude

of contribution of h
(1)
n (x, t) to h(1)(x, t) decreases with n in general. This also clearly

indicates that h
(1)
n (x, t) are proportional to σY (x). Derivation of higher-order terms

h
(m)
i1,i2,...,im

(x, t) can be found in [21].
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We solve h
(m)
i1,i2,...,im

up to third order, i.e., m = 3. Once we solve h(0), h
(1)
n , h

(2)
ij ,

and h
(3)
ijk, we can directly compute the mean head and the head covariance without

solving equations for Ch(x, t;χ, τ) and CYh(x;χ, τ), both of which are required in the
CME approach. Up to third order in σY , the head is approximated by

h(x, t) ≈
3∑

i=0

h(i)(x, t),(4.17)

which leads to an expression for the mean head

〈h(x, t)〉 ≈
3∑

i=0

〈h(i)(x, t)〉 = h(0)(x, t) +

∞∑
i=1

h
(2)
ii (x, t).(4.18)

The first term on the right-hand side of (4.18) is the zeroth-order (or first-order)
approximation of the mean head: 〈h(0)(x, t)〉 ≡ h(0)(x, t). The second term repre-
sents the second-order (or third-order) correction to the zeroth-order mean head. In
deriving (4.18), we used the fact 〈ξiξj〉 = δij .

From (4.17)–(4.18), one can write the head perturbation up to third-order accu-
racy,

h′(x, t) = h(x, t) − 〈h(x, t)〉 ≈
3∑

i=1

h(i)(x, t) − 〈h(2)(x, t)〉,(4.19)

where 〈h(2)〉 = 〈
∑∞

i,j=1 ξiξjh
(2)
ij 〉 =

∑∞
i=1 h

(2)
ii . Equation (4.19) leads to the head

covariance

Ch(x, t;y, τ) =

∞∑
i=1

h
(1)
i (x, t)h

(1)
i (y, τ) + 2

∞∑
i,j=1

h
(2)
ij (x, t)h

(2)
ij (y, τ)

+ 3

∞∑
i,j=1

h
(1)
i (x, t)h

(3)
ijj(y, τ) + 3

∞∑
i,j=1

h
(1)
i (y, τ)h

(3)
ijj(x, t).(4.20)

The head variance up to second order in σ2
Y (or fourth order in σY ) can be derived

from (4.20) as

σ2
h(x, t) =

∞∑
i=1

[h
(1)
i (x, t)]2 + 2

∞∑
i,j=1

[h
(2)
ij (x, t)]2 + 6

∞∑
i,j=1

h
(1)
i (x, t)h

(3)
ijj(x, t).(4.21)

Here the first term on the right-hand side of (4.21) represents the head variance up to
first order in σ2

Y , and the second and third terms are second-order (in σ2
Y ) corrections.

Note that, using the CME method, one can solve only the first term in (4.21) at the
cost of solving sets of algebraic equations with N unknowns for about 2N times, where
N is the number of grid nodes in the domain.

5. Illustrative examples. In this section, we attempt to examine the validity
of the KL-based moment-equation approach in computing higher-order head moments
for flow in hypothetical, zoned saturated porous media by comparing model results
with those from MC simulations.
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Fig. 5.1. Schematic diagram showing the zonation and the boundary configuration for case 1.

In the first example (case 1), we consider a two-dimensional domain in a saturated
heterogeneous porous medium. A rectangular flow domain of size L1 = 50 [L] and
L2 = 40 [L] (where L is any consistent length unit) is partitioned into four zones and
uniformly discretized into 50×40 square elements (Figure 5.1). The hydraulic head is
prescribed at the left and right boundaries as 10.5 [L] and 10.0 [L], respectively. The
no-flow conditions are prescribed at two lateral boundaries. The statistics of medium
properties for all zones are also shown in Figure 5.1.

The log saturated hydraulic conductivity Y (x) = lnKs(x) in each zone Ωm is
second-order stationary with a separable exponential covariance function,

C
(m)
Y (x,y) = C

(m)
Y (x1, x2; y1, y2) = σ2

Y,m exp

[
−|x1 − y1|

η
(m)
1

− (|x2 − y2|)
η
(m)
2

]
,(5.1)

where η
(m)
1 and η

(m)
2 are correlation lengths in the x1- and x2-directions, respectively,

and may vary from zone to zone. In this case, the eigenvalues λ
(m)
n , n = 1, 2, . . . ,

and their corresponding eigenfunctions f
(m)
n (x), n = 1, 2, . . . , for each zone Ωm can

be solved analytically [21]. For the entire domain, its eigenvalues and eigenfunctions
can be obtained either by numerically solving (3.4) directly or solving (3.10) for each
zone and then combining them together, as described in the previous sections. The
two procedures lead to almost identical results. Note that, for a large-scale problem,
solving the eigenvalue problem for the entire domain is computationally expensive, and
solving it for each individual subdomain will significantly reduce the computational
cost.

Figure 5.2 depicts eigenvalues for each zone and their accumulative eigenvalues as
functions of the mode number. The maximum accumulative eigenvalue for each zone
can be determined by the product of the variability of the log hydraulic conductivity
and the size (area for the two-dimensional problem) of the subdomain. Note that,
although theoretically the solution of (3.10) includes an infinite number of eigenval-
ues and eigenfunctions, the discretized version of the equation has a finite number
of eigenvalues and eigenfunctions, which is the number of grid nodes in each zone.
Short curves in the figure represent fewer grid nodes in their corresponding subdo-
mains. Once the eigenvalues and eigenfunctions for each individual zone are solved,
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Fig. 5.2. Eigenvalues (a) and the accumulative values (b) for four individual zones and the
entire simulation domain for case 1.

x1

x 2

0 10 20 30 40 50
0

10

20

30

40
(a) f1

x1

0 10 20 30 40 50

(b) f3

x1

0 10 20 30 40 50

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

(c) f10

x1

x 2

0 10 20 30 40 50
0

10

20

30

40
(d) f14

x1

0 10 20 30 40 50

(e) f15

x1

0 10 20 30 40 50

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

(f) f17

Fig. 5.3. Selected eigenfunctions for case 1.

the eigenvalues and eigenfunctions for the entire domain Ω can be determined using
the algorithm described in section 4. The eigenvalues for the entire domain and its
corresponding accumulative value are also illustrated in Figure 5.2. Some selected
eigenfunctions for the entire domain are demonstrated in Figure 5.3.

Since the sum of all eigenvalues for any zone Ωm is related to total variability∑
λn = σ2

Y,m|Ωm|, the zone with either a small variability or a small size will have

small magnitudes of λ
(m)
n and will be ranked low in the sorted eigenvalues for the

entire domain. As a result, the variability of the log hydraulic conductivity for such a
zone will have a relatively small contribution to the statistics of the head field in the
entire domain.

In this example, we choose n1 = 100, n2 = 20, and n3 = 10, i.e., solving h
(1)
i for

i = 1, n1, h
(2)
ij for i, j = 1, n2, and h

(3)
ijk for i, j, k = 1, n3. Because these terms are
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Fig. 5.4. A typical MC realization of the log hydraulic conductivity field for case 1.
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Fig. 5.5. Comparison of the mean head fields from MC simulations (solid curves) and the
KLME method up to zeroth-order (dashed curves) and second-order (dotted curves) accuracy for
case 1.

symmetric with respect to their indices, the actual number of times to solve sets of
linear algebraic equations with N unknowns is 1 (zeroth order) + 100 (first order) +
220 (second order) + 230 (third order) = 551. The computational cost for solving
each set of these equations is more or less equivalent to that for solving each of the
MC realizations.

To demonstrate the accuracy and efficiency of the KLME method, we conducted
MC simulations. MC realizations are generated using (3.15) based on the computed
eigenvalues and eigenfunctions. Figure 5.4 shows a typical MC realization of the log
hydraulic conductivity. Note that the range of the natural log hydraulic conductivity
in this realization is about −5.0 ∼ 5.0, which means that the difference of the hydraulic
conductivity is about four orders of magnitude. The statistics (mean, variance, and
correlation lengths) of the generated 10,000 realizations have been compared with
their specified values. Each realization of the conductivity field is then used to solve
the head field from the original flow equation with boundary and initial conditions,
i.e., (2.1)–(2.5), and the statistics (mean and variance) of the hydraulic head are
computed from the ensemble of these head realizations and are considered as the
“true” solutions for the problem.

Figure 5.5 compares the mean head computed from MC simulations (solid curves)
and the KLME method with zeroth-order (dashed curves) and second-order (dotted
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Fig. 5.6. Comparison of the head variance from MC simulations and the KLME method up to
second-order accuracy for case 1.

curves) approximations. Here the zeroth-order solution represents the first term on
the right-hand-side of (4.18), while the second-order solution accounts for both two
terms (truncated series). For this particular case, although adding the second-order
correction improves the solution slightly (the dotted curves are almost overlapped
with the solid curves), the zeroth-order solution is fairly close to the MC results.
Note that, because of relatively low hydraulic conductivity in Zone 4, the head gradi-
ent in this zone is large, while the gradient in Zone 3 is very low. This spatial pattern
of the head gradient has a significant effect on head variability, as illustrated in Fig-
ure 5.6. The contour maps in Figure 5.6 compare the head variance derived from MC
simulations and from the KLME method with first-order accuracy (truncated series
of the first summation in (4.21)) and second-order accuracy (truncated series of all
three summations in (4.21)) in terms of σ2

Y . It is seen from the figure that both the
first- and second-order approximations reproduce the MC results very well. In addi-
tion, it is worthy to note the spatial variation of the head variability over the domain.
Zone 1 has the largest head variability, largely due to its high variability in the log
hydraulic conductivity (σ2

Y,1 = 1.0). Although Zone 3 has the same variability of the
log hydraulic conductivity, the head variability is very low because of a low mean
head gradient in this zone (see Figure 5.5). Zone 4 has a relative high head variability
because of a high head gradient in this zone, but the head variability is smaller than
that in Zone 1 due to a smaller variability in hydraulic conductivity (σ2

Y,4 = 0.5).
In the second example (case 2), the simulation domain and flow boundary con-

figuration are the same as in case 1, but the domain is partitioned into six zones,
as illustrated in Figure 5.7. The proportions of different zones and the statistics of
medium properties for all zones are listed in Table 5.1. The log saturated hydraulic
conductivity Y (x) = lnKs(x) in each zone is second-order stationary with an expo-
nential covariance function

CY (x,y) = CY (x1, x2; y1, y2) = σ2
Y exp

[
− (x1 − y1)

2

η2
1

− (x2 − y2)
2

η2
2

]
.(5.2)

In this example, the eigenvalues λ
(m)
n , n = 1, 2, . . . , and their corresponding eigen-

functions f
(m)
n (x), n = 1, 2, . . . , for each zone Ωm have to be solved numerically from

(3.10). Figure 5.8 illustrates the eigenvalues and their accumulative values for all six
individual zones and the entire simulation domain. From the figure, it is seen that for
the entire domain the first 100 modes account for about 76% of the total variability
and the first 30 modes for about 50% of the total variability. Figure 5.9 depicts some
selected eigenfunctions for the simulation domain.
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Fig. 5.7. Schematic diagram showing the zonation and the boundary configuration for case 2.

Table 5.1

Statistical parameters for different zones (case 2).

Parameters Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

Proportion 0.440 0.307 0.010 0.023 0.095 0.125

〈Y 〉 0.0 2.0 −2.0 −5.0 3.0 1.0

σ2
Y 1.0 1.0 0.5 0.5 1.0 1.0

η1 10.0 10.0 3.0 4.0 8.0 8.0

η2 5.0 2.0 2.0 2.0 3.0 3.0∑
n λ

(m)
n 880.1 613.1 10.0 23.3 189.4 249.6
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Fig. 5.8. Eigenvalues (a) and the accumulative value (b) for six individual zones and the entire
simulation domain for case 2.

In this base case, we choose n1 = 100, n2 = 20, and n3 = 10, requiring us to solve
sets of linear algebraic equations with N unknowns for 551 times.

Figure 5.10 compares contour maps of the mean head computed from MC simu-
lations (solid curves) and the KLME method with different orders of approximations.
The figure demonstrates that, although the zeroth-order solution (dashed curves) is
fairly close to the MC results, adding second-order corrections (dotted curves) does
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Fig. 5.9. Selected eigenfunctions for case 2.
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Fig. 5.10. Comparison of the mean head from MC simulations and the KLME method up to
second-order accuracy for case 2.

improve the results significantly. In fact, the contours for the second-order mean head
are almost identical to those of MC simulations.

The comparison of head variability derived from MC simulations and the KLME
approach with different orders of approximations is illustrated in Figure 5.11. The
figure shows that both first- and second-order approximations (in terms of σ2

Y ) re-
produce MC results very well, while the computational cost for the KLME method is
significantly lower than that required for MC simulations. It should be emphasized
that, for the first-order KLME solution, the number of times needed to solve sets of
linear algebraic equations of N (the number of grid nodes) unknowns is 101 for this
case, as compared to thousands of times for the MC simulations and 2N times for
the CME method [15]. Next, we explore in some detail how the number of terms in-
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Fig. 5.11. Comparison of the head variance from MC simulations and the KLME method up
to second-order accuracy for case 2.
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Fig. 5.12. Comparison of the head variance along the profile x2 = 30, computed from MC
simulations and the KLME method up to second-order accuracy with n1 = 100 (case 2) and n1 = 30
(case 2 1).

cluded in the decomposition affect the accuracy and efficiency of the KLME method.
We also investigate the potential effects of ignoring variability of the log hydraulic
conductivity in some zones. Comparing to the base case, case 2, in case 2 1 we reduce
the number of modes, n1, from 100 to 30, while keeping n2 and n3 unchanged as in
case 2. Since the largest eigenvalue for Zone 3 and Zone 4 is ranked in the sorted set of
eigenvalues for the entire domain as 66th and 53rd, respectively, by choosing n1 = 30
we actually have ignored the contribution of parameter variability in these two zones
to head variability. Figure 5.12 compares the head variability along a profile x2 = 30,
which passes both Zone 3 and Zone 4. The figure clearly indicates that the solutions
with only 30 modes in the first-order decomposition can capture the head variability
very well, even though 30 modes in the KL decomposition represent only about 50%
of the total variability of the log hydraulic conductivity. This phenomenon has been
observed earlier [17], although its mechanism is still not clear. Several other obser-
vations may be of interest. Although the variability of the hydraulic conductivity in
Zones 3 and 4 has been ignored, the head variability in these two zones is nonzero,
which means that the head variability is a nonlocal quantity. That is to say, the
head variance at any point in the domain depends on variability of the log hydraulic
conductivity in the entire domain. In addition, it seems that ignoring variability
of hydraulic conductivity in some zones will not significantly affect predicting head
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Fig. 5.13. Comparison of the head variance along the profile x2 = 30, computed from MC
simulations and the KLME method up to second-order accuracy for case 2 1 and case 2 2.
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Fig. 5.14. Comparison of the head variance along the profile x2 = 20, computed from MC
simulations and the KLME method up to second-order accuracy for case 2 1 and case 2 3.

variability, as long as these zones have either a smaller area or a smaller variability
σ2
Y .

In case 2 1, 30 modes are chosen based on the magnitude of eigenvalues for the
entire domain. If instead we choose 30 modes by taking the five largest modes from
all six zones (case 2 2), the results from the KLME method will significantly deviate
from MC results, as illustrated in Figure 5.13 for the head variance. This comparison
indicates that the best strategy for choosing different modes from the decomposi-
tion should be based on the magnitude of eigenvalues for the entire domain, which
is derived from merging and then sorting eigenvalues of all individual zones, even
though potentially this may completely ignore the contribution of variability of the
log hydraulic conductivity from some zones.

In contrast to case 2 1, if one ignores the variability of the log hydraulic conduc-
tivity in Zone 2, in which both area and variability are large, the results from the
KLME method will also deviate significantly from the true solution, as demonstrated
in Figure 5.14, where a profile along x2 = 20 compares the head variance derived
from MC simulations and the KLME method up to second-order accuracy without
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Table 5.2

Relative mean squared error of head variance for different cases

Cases Description Error of σ
2,[1]
h Error of σ

2,[2]
h

case 2 n1 = 100 3.49E-02 1.88E-02

case 2 1 n1 = 30 (σ2
Y,3 and σ2

Y,4 ignored) 5.41E-02 3.44E-02

case 2 2 n1 = 30 (5 from each zone) 1.26E-01 1.01E-01

case 2 3 n1 = 30 (σ2
Y,2 ignored) 1.71E-01 1.44E-01

considering σ2
Y in Zones 3 and 4 (case 2 1) or without considering σ2

Y in Zone 2
(case 2 3).

Figures 5.12–5.14 compare only along a particular profile. To better quantify the
error introduced by different strategies for picking modes in the KL decomposition,
we calculate the relative mean square error defined as

error =
1

N

N∑
n=1

(u− uMC)2

u2
MC

,(5.3)

where N is the number of grid nodes, uMC is a quantity computed from MC simu-
lations, and u is the corresponding quantity derived from the KLME method. The
error measures the average deviation of the KLME solution from the MC results.
The errors of computed head variance up to second-order approximations for differ-

ent cases are listed in Table 5.2, where σ
2,[1]
h and σ

2,[2]
h stand for the head variance

up to first-order and second-order accuracy, respectively. The table shows that the
second-order solution of the head variance is consistently better than the first-order
solution. In addition, reducing the number of modes (from 100 to 30) does increase
the error. However, given the same number of modes (n1 = 30), choosing modes based
on the magnitude of eigenvalues for the entire domain is a better strategy (case 2 1),
as compared to the large errors introduced in cases 2 2 and 2 3.

6. Summary and discussions. In this study, we present a methodology for
simulating flow in nonstationary permeability fields using the KL-based moment-
equation method. The basis of the KLME method is the decomposition of the
stochastic permeability field, which involves solving eigenvalues and eigenfunctions
of covariance function of the permeability field. In a few special cases, such a decom-
position can be done analytically, but, in general, this has to be done numerically,
which is computationally expensive for larger-scale problems. When the permeabil-
ity field is nonstationary, which is a rule rather than an exception, the field in each
individual zone can be decomposed separately, and eigenvalues for the entire domain
can be obtained by merging eigenvalues from all zones and sorting them in a nonde-
creasing order, and the eigenfunctions corresponding to the sorted set of eigenvalues
for the domain should then be rearranged accordingly.

Once the permeability field is decomposed, the solution process is identical to
that presented in [21], and the computational efficiency of the KLME method is still
retained. The numerical examples show that, with adequate accuracy, the KLME
method is computationally much more efficient than both MC simulations and the
CME methods.

The contribution of variability of the log hydraulic conductivity to head moments
is related to the product of the subdomain size and its (mean-removed) variability
in the log hydraulic conductivity. The numerical experiments demonstrate that the
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contribution of the variability in the log hydraulic conductivity from a subdomain
after taking into account its mean may be ignored if either this subdomain is small
compared to the entire domain or the variability of the log hydraulic conductivity in
the subdomain is relatively small. Otherwise, as illustrated in case 2 3, the variability
in that zone should be taken into consideration. An important implication is that, in
reality, if there is not enough data to infer the variability of the permeability field from
a relatively small zone, it may be treated as a deterministic zone without significantly
affecting the prediction of the head variability.

In the case that the contribution of (mean-removed) variability of the log hydraulic
conductivity from some zones can be neglected, the head variability in these zones,
in general, is nonzero unless the problem is completely deterministic. This is because
the head variability is nonlocal; i.e., its value at any point depends on variability of
the log hydraulic conductivity in the entire domain.
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